|  | 
| source: adobe stock | 
The function  of a real variable x, is called the exponential function of a real variable x. is For a complex variable z=x+iy, the exponential function of Z,   written as expz, defined by 
                         exp z = exp(x+iy)=  (cos y+i sin y). 
This definition agrees with the real exponential function when z is purely real. When z is purely real, y = 0 and
                           exp z = exp(x+0)= (cos0+isin 0) =
. When z is purely imaginary, x =0 and
                           exp = exp(0+iy)=   (cos y+isin y) = cos y +isin y. 
Since  >0 for all real x, 
 (cos y +isin y) represents a complex number in polar form, 
  being the modulus and y being an amplitude of expz. Since 
  >0 for any real number x, the expz is a non-zero complex number for any complex number z.
Let u+iv be a non-zero complex number and let it's polar re-representation be r(cosθ+isin Î¸). Since r is positive, log r is real and r can be expressed as   Therefore 
                              u + iv =  (cosθ+i sin Î¸) = exp (logr+iθ) 
Thus when u +iv is a given non-zero complex number, there exists a complex number, Z= logr+iθ such that exp z =u+iv. This means that the range of the exponential function of z is the entire complex plane excluding the origin.
 

 
 
 
 
0 Comments