Ticker

6/recent/ticker-posts

LOGARITHMIC FUNCTION OF A COMPLEX NUMBER

source: adobe stock


Let z be a non-zero complex number. Then there always exists a complex number w such that  = z. w is said to be a Logarithm of z. 

Again  =   where n is an integer. This shows that if it is a logarithm of z, then  is also a logarithm of z. This means that 'logarithm of z' is a many-valued function of z. This is denoted by 

                                        Log z =  

Of the many values of the logarithm of z, a particular one is called the principal value and is denoted by log z. Since z is a non-zero complex number, z has a polar representation.

 Let z = r(cosθ+isinθ)   -Ï€<θπ (a polar form with amp z). 

Let w=u+iv be a logarithm of z. Then  =z. This gives 

                                               (cos v+isin v) =r(cosθ+i sin Î¸

cos v= rcos Î¸     and        sin v = rsinθ 

We have      = r  and y cosv= cos Î¸, sin v= sin Î¸.

 These determine u = log r  and v=θ+2nÏ€, where n is an integer. 
              w= log r+i(θ+2nÏ€),-Ï€<θπ
   i.e.    Log z = log r+i(θ+2nÏ€) = log|z|+i(arg z+2nÏ€). 
The principal value of Log z, denoted by log z, is the value corresponding to n=0. 

Thus,     log z = log|z|+i arg z .

                       

Post a Comment

0 Comments