Ticker

6/recent/ticker-posts

DEMOVIRE'S THEOREM

source: adobe stock


 If n is an integer, positive or negative and Î˜ is a real number 

(COSΘ +iSINΘ)n = cosnθ+isinnθ

 If n is a fraction, positive or negative and Î˜ is a real number  cosnθ+isinnθ is one of the values of (COSΘ +iSINΘ)n

 More explicitly, 

( i ) If n is an integer, positive or negative and Î˜ is a real number, then (COSΘ +iSINΘ) has only one value, namely cosnθ+isinnθ

( ii ) If n is a positive fraction of the form p / q in its lowest terms, p and q being positive integers 

( q 0 ) and Î˜ is a real number, then (COSΘ +iSINΘ)∧(p/q) has q values of which one value is                         cos(p/q)θ+isin(p/q)θ


(iii)If n is a negative fraction of the form (-p/q)  in its lowest terms, p and q being  positive integers ( q0) and Î˜ is a real number, then  (COSΘ +iSINΘ)∧(-p/q)  has q values of which one value is

                              cos(-p/q)θ+isin(-p/q)θ=cos(p/q)θ-isin(p/q)θ

(iv) If n is an irrational number and Î¸is a real number, then (COSΘ +iSINΘ)n has an infinite number of values of which one value is cosnθ+isinnθ


Click Here in YOUTUBE



Post a Comment

0 Comments