Ticker

6/recent/ticker-posts

Principle of induction





 Let S be a subset of â„• such that 

(i) 1 S, and 

(ii) if k  S then k +1S. 

Then S = â„•.


Proof.
 Let T=â„• - S. We prove that T=Φ.
 Let T be non-empty. Then by the well ordering property of â„•, the non-empty subset T has the least element, say m.

 Since 1   S and 1 is the least element of â„•, m > 1. 
Hence m-1 is a natural number and m-1∉T. So m-1S.
 But by (ii) m-1 S (m-1) +1S, i.e. mS. 

This contradicts that m is the least element in T. Therefore our assumption is wrong and T=Φ
Therefore S= N. This completes the proof.

Post a Comment

0 Comments