Ticker

6/recent/ticker-posts

Show that 0 is a characteristic root of matrix A if and only if A is singular

source: adobe stock


 Solution:

 Let 0 be the characteristic equation of matrix A. Then implies ⌈A-Î¥I⌋=0

 Hence  |A |=0 is singular. 

Conversely, let A is singular matrix, then

 | A-Î¥I | = 0

  |A |+(-Î¥)|I| = 0 

⇒   (-Î¥) 1 = 0 

implies, Î¥ = 0 


Post a Comment

0 Comments